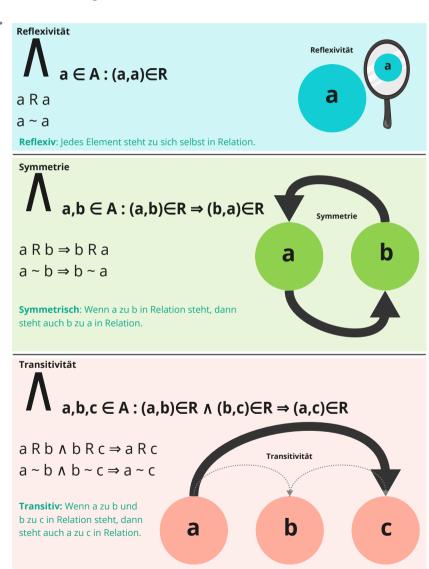
Was ist eine Relation?

In der Mathematik ist eine **Relation** eine Verbindung zwischen Elementen von zwei (oder mehr) Mengen. Einfach gesagt, eine Relation sagt, wie zwei Dinge zueinander in Beziehung stehen.

Und Relationen können Eigenschaften haben? Welche sind das?



Antisymmetrie (bzw. *Identitivität*)

Λ

 $a,b \in A : (a,b) \in R \land (b,a) \in R \Rightarrow a=b$

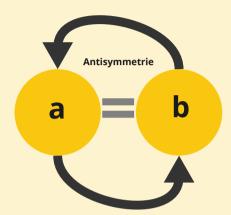
$$a R b \wedge b R a \Rightarrow a = b$$

 $a \sim b \wedge b \sim a \Rightarrow a = b$

Antisymmetrisch: Dies bedeutet, dass wenn zwei Elemente in beide Richtungen in Relation stehen, sie gleich sein müssen.

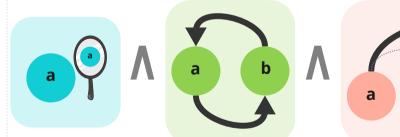
In einfachen Worten:

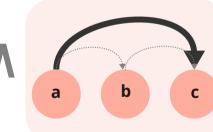
Wenn a mit b in Relation steht und b mit a in Relation steht, dann muss a=b sein.



Äquivalenzrelation

Eine Äquivalenzrelation ist eine spezielle Art von Relation, die drei Eigenschaften hat: sie ist reflexiv, symmetrisch und transitiv.





Äquivalenzklasse

Eine Äquivalenzklasse in der Mathematik ist eine Gruppe von Elementen, die durch eine Äquivalenzrelation miteinander verbunden sind.

Aufgabe 1

Gegeben sei eine Relation R auf der Menge $\mathbb{N} = \{0,1,2,3,4,5,6,...\}$ (der natürlichen Zahlen), definiert durch:

a R b :⇔ a • b = 24

Überprüfe, ob die Relation R folgende Eigenschaften hat: 1. Reflexivität

- 2. Symmetrie
- 3. Transitivität
- 4. Antisymmetrie

Lösung

1 R 24, denn 1 • 24 = 24 (1,24) **2 R 12**. denn 2 • 12 = 24 (2.12)

2 R 12, denn 2 • 12 = 24 (2,12) **3 R 8**, denn 3 • 8 = 24

3 R 8, denn 3 • 8 = 24 **4 R 6**, denn ...

6 R 4 8 R 3

12 R 2

24 R 1

 $R = \left\{ (1,24), (2,12), (3,8), (4,6), (6,4), (8,3), (12,2), (24,1) \right\}$

Reflexiv (a R a)?

a R a

Nein!

Gegenbeispiel:1 ist ein Element von R. Aber es gilt nicht: 1 • 1 = 24

Symmetrisch (a R b \Rightarrow b R a)?

Symmetrie

 $\bigwedge_{a,b \in A : (a,b) \in R \Rightarrow (b,a) \in R}$

 $aRb \Rightarrow bRa$

Ja!

_

Begründung:Es gilt stets: 1 • 24 = 24 • 1
Die Multiplikation ist kommutativ.

Transitiv (a R b \wedge b R c \Rightarrow a R c)?

a R b ∧ b R c ⇒ a R c

Nein!

Gegenbeispiel:

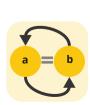
Es gilt $1 \cdot 24 = 24$ und es gilt $24 \cdot 1 = 24$. Aber es gilt nicht

1 • **1** = 24.

Antisymmetrie (a R b \wedge b R a \Rightarrow a = b)?

Antisymmetrie

 $a R b \wedge b R a \Rightarrow a = b$



Nein!

Gegenbeispiel:

Es gilt $3 \cdot 8 = 8 \cdot 3 = 24$. Aber es gilt nicht 3 = 8.

Aufgabe 2

Betrachte die Menge {1, 2, 3, 4} und die Relation R, definiert durch:

a R b :⇔ a ist ein Teiler von b

Überprüfe, ob die Relation R folgende Eigenschaften besitzt:

- 1. Reflexivität
- 2. Symmetrie
- 3. Transitivität

4. Antisymmetrie

Lösung

1 R 1, denn 1 durch 1 ist 1.

1 R 2, denn 2 durch 1 ist 2.

1 R 3, denn 3 durch 1 ist 3

1 R 4, denn 4 durch 1 ist 4.

2 R 2, denn 2 durch 2 ist 1.

2 R 4, denn 4 durch 2 ist 1.

2 D 2 donn 3 durch 3 ist 1

3 R 3, denn 3 durch 3 ist 1. **4 R 4**, denn 4 durch 4 ist 1.

Definition der Teilerrelation

 $\wedge a_1b \in \mathbb{N} : a \mid b : \Leftarrow \forall k \in \mathbb{N} : b = a \cdot k$

"Für alle a,b der natürlichen Zahlen gilt, a teilt b definitionsgemäß genau dann wenn es mindestens eine Zahl k der natürlichen Zahlen gibt, für die folgendes gilt: b ist das Produkt aus a und k, bzw. b ist ein k-faches von a."

$R = \left\{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4) \right\}$

Reflexiv (a R a)?

Reflexivität $\bigwedge_{a \in A : (a,a) \in R}$

aRa

la!

Begründung:Jede Zahl ist Teiler von sich selbst.

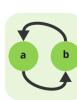
(1,1),(2,2),(3,3),(4,4)

Symmetrisch (a R b \Rightarrow b R a)?

Symmetrie

 $\bigwedge_{a,b \in A : (a,b) \in R \Rightarrow (b,a) \in R}$

 $aRb \Rightarrow bRa$



Nein!

Gegenbeispiel:

Z.B. ist 1 ein Teiler von 2, aber 2 ist kein Teiler von 1.

Denn die Division ist nicht kommutativ.

Transitiv (a R b \wedge b R c \Rightarrow a R c)?

Transitivität

 \bigwedge a,b,c \in A: (a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R

Ja!

Begründung:Genau dann, wenn a|b und

b|c, so ist auch a|c... aber dies müssen wir beweisen...

a R b ∧ b R c ⇒ a R c

Beweis der Transitivität im Allgemeinen

 $aRb \wedge bRc \Rightarrow aRc$ $a|b \wedge b|c \Rightarrow a|c$

.

Behauptung $a \mid c$ $c = a \cdot \mid N$

Beweisführung $\wedge a_1 b \in \mathbb{N} : a \mid b : \Leftarrow \forall k \in \mathbb{N} : b = a \cdot k$

 \wedge b, c \in |N:b| c : \leftarrow \vee $m \in |N:c=b \cdot m$

 $b = a \cdot k$ $c = b \cdot m$

Wir substituieren b mit ak.

 $c = b \cdot m = a \cdot k \cdot m$

Wir setzen Klammern (Assoziativgesetz)

 $c = a \cdot (k \cdot n)$

 $\bigwedge k_1 n \in |N| \bigvee x \in |N| : X = k \cdot m$

 $c = \alpha \cdot X$

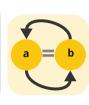
c ist ein Vielfaches von a, demnach ist a aufgrund der Vielfacheneigenschaft der Teilerrelation ein Teiler von c.

 \Rightarrow a c

Antisymmetrie (a R b \wedge b R a \Rightarrow a = b)?

Antisymmetrie

 $a \mid b \land b \mid a \Rightarrow a = b$



la!

Begründung:

Wenn a|b und b|a, so gilt stets auch a=b. Wir sehen das in den

Tupeln: (1,1),(2,2),(3,3),(4,4)

Aber wir müssen das beweisen...

Beweis der Antisymmetrie im Allgemeinen

Voraussetzung

Behauptung

$$a = b$$

Beweisführung

 $\bigwedge a_1 b \in \mathbb{N} : b \mid a : \rightleftharpoons \bigvee m \in \mathbb{N} : a = b \cdot m$ b= a.k.

$$a = b \cdot m$$

Wir substituieren b mit ak.

$$a = b \cdot m = a \cdot k \cdot m$$

$$a = a \cdot k \cdot m$$

Wir setzen Klammern (Assoziativgesetz)

$$\alpha = \alpha \cdot (k \cdot n)$$
 : 0

Okay moment, **a = a•k•n** ??? Für welche natürliche Zahl **k** und für welche natürliche Zahl **n** wäre das eine richtige Gleichung? Genau!

Nur für $\mathbf{k} = \mathbf{n} = \mathbf{1}$. Oder auch: Die einzigen Faktoren der natürlichen Zahlen, die im Produkt 1 ergeben, sind jeweils 1. Also gilt $\mathbf{k} = \mathbf{n} = \mathbf{1}$

Wenn $\mathbf{k} = \mathbf{n} = \mathbf{1}$ ist, dann gilt das doch auch für die beiden folgenden Gleichungen:

$$b = a \cdot k = a \cdot \Lambda = a$$

$$a = b \cdot m = b \cdot \Lambda = b$$

$$a = b$$

